Sunday, November 22, 2009

SWARM INTELLIGENCE TECHNIQUES

As defined earlier swarm intelligence refers to the more general set of algorithms. The most popular are

• Ant colony optimization
• Particle swarm optimization
• Stochastic diffusion search

1 Ant colony optimizaion
Ant colony optimization is a class of optimization algorithms modeled on the actions of an ant colony. Artificial 'ants' - simulation agents - locate optimal solutions by moving through a parameter space representing all possible solutions. Real ants lay down pheromones directing each other to resources while exploring their environment. The simulated 'ants' similarly record their positions and the quality of their solutions, so that in later simulation iterations more ants locate better solutions.

The technique can be used for both Static and Dynamic Combinatorial optimization problems. Convergence is guaranteed, although the speed is unknown.

2 Particle Swarm Optimization
Particle swarm optimization or PSO is a global optimization algorithm for dealing with problems in which a best solution can be represented as a point or surface in an n-dimensional space. Hypotheses are plotted in this space and seeded with an initial velocity, as well as a communication channel between the particles. Particles then move through the solution space, and are evaluated according to some fitness criterion after each timestep. Over time, particles are accelerated towards those particles within their communication grouping which have better fitness values. The main advantage of such an approach over other global minimization strategies such as simulated annealing is that the large number of members that make up the particle swarm make the technique impressively resilient to the problem of local minima.

3 Stochastic diffusion search
Stochastic Diffusion Search or SDS is an agent based probabilistic global search and optimization technique best suited to problems where the objective function can be decomposed into multiple independent partial-functions. Each agent maintains a hypothesis which is iteratively tested by evaluating a randomly selected partial objective function parameterized by the agent's current hypothesis. In the standard version of SDS such partial function evaluations are binary resulting in each agent becoming active or inactive. Information on hypotheses is diffused across the population via inter-agent communication. Unlike the stigmergic communication used in ACO, in SDS agents communicate hypotheses via a one-to-one communication strategy analogous to the tandem running procedure observed in some species of ant. A positive feedback mechanism ensures that, over time, a population of agents stabilize around the global-best solution.

No comments:

Post a Comment